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There has been considerable recent synthetic and theoretical 
interest in perlithiated organic compounds. While numerous 
polylithiated aliphatic hydrocarbons have been studied,1 very little 
is known about perlithiated aromatic compounds.2 Lagow has 
reported the synthesis of hexalithiobenzene by lithiation of 
hexachlorobenzene with terf-butyllithium and has obtained its 
mass spectrum.2 Monolithiated transition metal cyclopentadienyl 
complexes are well known and have been widely used as synthetic 
intermediates in organometallic synthesis.3 However, experi­
mental evidence for complexes containing di-, tri-, or tetralithiated 
cyclopentadienyl ligands is meager,4 and complexes bearing 
pentalithiocyclopentadienyl ligands remain unknown. Herein we 
report that treatment of pentakis(acetoxymercurio)(pentamethyl)-
ruthenocene and decakis(acetoxymercurio)ruthenocene with 
methyllithium represents a simple route to pentamethylpen-
talithioruthenocene and decalithioruthenocene. Pentamethyl-
pentalithioruthenocene and decalithioruthenocene constitute the 
first examples of pentalithiocyclopentadienyl complexes. These 
species react with simple electrophiles to afford 48-67% yields 
of persubstituted products. Pentamethylpentalithioruthenocene 
can be isolated as an orange powder that is stable for short periods 
at ambient temperature. The results of this study suggest that 
other pentametalated cyclopentadienyl complexes should be easily 
accessible and may constitute a new class of useful reactive species. 

Scheme 1 outlines the synthesis and reactions of pentameth-
ylpentalithioruthenocene (1). Treatment of pentakis(acetoxymer-
curio) (pentamethyl)ruthenocene5 with methyllithium (10 equiv) 
in tetrahydrofuran at -78 0C led to the immediate formation of 
a deep yellow-orange solution containing 1. After the solution 
was stirred for 1 h at -78 0C, addition of bromine (ca. 13 equiv) 
led to rapid (<1 min) bleaching of the orange color. Workup 
afforded (pentabromo)(pentamethyl)ruthenocene5 (2, 38%), 
(pentamethyl)(tetrabromo)ruthenocene6 (3, 22%), and (meth-
yltetrabromo)(pentamethyl)ruthenocene6(4,12%).7 Thethermal 
stability of 1 was investigated by warming a tetrahydrofuran 
solution to 23 0C prior to bromine addition. Workup afforded 
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2 (8%), 3 (3%), and 4 (2%). Hence, solutions of 1 have limited 
stability at 23 0C. Treatment of 1 with methyl iodide (ca. 20 
equiv) at -78 0C afforded decamethylruthenocene8 (5, 46%), 
(iodotetramethyl)(pentamethyl)ruthenocene6 (6,21%), and non-
amethylruthenocene6 (7, 14%). Finally, hydrolysis with water 
(ca. 20 equiv) gave pentamethylruthenocene (8, 46%) and 
ruthenocene (9, 23%).* 

Complex 1 could be precipitated by addition of hexane at -78 
0C to afford an exceptionally air-sensitive bright orange powder. 
This material was insoluble in tetrahydrofuran-rfg at 23 ° C, which 
precluded NMR analysis.10 However, treatment of the precipi­
tated powder with bromine in tetrahydrofuran afforded 2 (23%), 
which indicated that the powder had not decomposed. This 
experiment also indicates that solid 1 is considerably more stable 
at 23 0C than is a tetrahydrofuran solution of 1. 

The facile route to 1 suggested that an analogous strategy 
should afford a decalithiometallocene. Accordingly, treatment 
of decakis(acetoxymercurio)ruthenocene11 with methyllithium 
(20 equiv) in tetrahydrofuran at -78 0C gave an immediate color 
change from white to red-orange and afforded a solution 
containing decalithioruthenocene (10, eq 1). After 1 h at -78 
0C, addition of methyl iodide, followed warming to ambient 
temperature and workup, afforded 5 (24%), 6 (24%), and 7(12%). 
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The formation of persubstituted products in 48-67% yields 
upon treatment of 1 and 10 with simple electrophiles is excellent 
evidence for the formation of ruthenocenes bearing pentalithio­
cyclopentadienyl ligands. The similar product mixtures derived 
from treatment of 1 and 10 with methyl iodide suggest that these 
reactions proceed through the same intermediate. We propose 
that the observed product distributions (i.e., 5,6,7) can be derived 
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Scheme 1. Preparation and Reactions of 1 
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Scheme 2. Reactions of 11 
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from the penultimate species nonamethyllithioruthenocene (11, 
Scheme 2). Direct methylation of 11 with methyl iodide would 
afford 5, while proton abstraction from solvent would afford 7. 
Complex 7 could also be obtained by proton abstraction from 
tetrahydrofuran by 1 and 10, although if this pathway were viable, 
other protonated products (e.g., complexes bearing C5X3H2, 
CjX2H3 ligands) should have been isolated. Lithium-halogen 
exchange of 11 with methyl iodide would afford 6.12 The 
observation of ruthenocene upon hydrolysis of 1 is puzzling.9 We 
propose that 1 may be dimeric or oligomeric in solution via bridging 
lithium atoms. Such a structure would place two cyclopentadienyl 

Ru 

8,47% 9,23% 

ligands in close proximity to the ruthenium centers and might 
lead to ligand exchange upon hydrolysis. 

In summary, pentamethylpentalithioruthenocene (1) and 
decalithioruthenocene (10) have been prepared by treatment of 
the permercurated precursors with methyllithium in tetrahy­
drofuran and are surprisingly stable. While the structural 
parameters of 1 and 10 remain to be determined, treatment with 
simple electrophiles gives moderate to good yields of persubstituted 
products. The exchange reaction of permercurated cyclopen­
tadienyl complexes with methyllithium appears to constitute a 
general route to perlithiocyclopentadienyl complexes. For 
example, we have prepared decalithioferrocene, (pentalithiocy-
clopentadienyl)manganese tricarbonyl, and (pentalithiocyclo-
pentadienyl)rhenium tricarbonyl by lithiation of the permercu­
rated complexes.13 We are continuing to study the synthesis, 
structure, and reactivity of permetalated cyclopentadienyl com­
plexes and will report these results in due course. 
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